NUMERICAL SOLUTION OF THE PROBLEM OF THE
FLOW OF A SUPERSONIC GAS STREAM OVER THE
UPPER SURFACE OF A DELTA WING IN THE
EXPANSION REGION

G. P. Voskresenskii UDC 533.6.011 : 51

A numerical method is described for the calculation of supersonic flow over the arbitrary up-
per surface of a delta wing in the expansion region. The shock wave must be attached every-
where to the leading edge of this wing from the side of the lower surface, The stream flowing
over the wing is assumed to be nonviscous, A problem with initial conditions at some plane
and with boundary conditions at the wing surface and the characteristic surface is set up for
the nonlinear system of equations of gas dynamics. The difference system of equations, which
approximates the original system of differential equations on a grid, has a second order of ac-
curacy and is solved by the iteration system proposed in [1]. The initial conditions are de-
termined by the method of establishment of self-similar flow. A number of examples are con-
sidered. Comparison is made with the solutions of other authors and with experiment.

1. Let us examine the supersonic flow over a delta wing, assuming that the component of the velocity
vector of the impinging stream normal to the leading edge is greater than the speed of sound and the bow
shock wave is attached to the leading edge of the wing. The flows above and below the wing do not affect
one another and can be examined separately. A solution of the problem for compression flow was given
in [2]. Let us consider the expansion flow which develops at the upper surface of the wing if the angle of
attack of the wing computed inthe plane normal to the leading edge becomes greater than half the angle of
the nose cross section in the same plane. The region of flow will be bounded by the wing surface and the
characteristic surface emerging from the leading edge. We will assume that the surface of the wing is
arbitrary. If it is conical the flow at the upper surface in the indicated region will possess the self-simi-
lar properties of conical flow,

Let us introduce a Cartesian coordinate system with the origin at the tip of the wing. The x axis is
located in the vertical plane of symmetry, the z axis is directed along the wing span to the left, and the y
axis is directed upward. The velocity vector of the impinging stream has an arbitrary angle of attack and
lies in the xy plane (Fig. 1). The latter condition may be excluded and then the flow will be accompanied
by slippage. The introduction of the condition of symmetry of the flow is done to reduce the calculations.

We will assume that the impinging stream is nonviscous and non-heat-conducting. We will divide the
region of flow into three parts with the plane Q; and the surface Q. The plane Q, coincides with the plane
x = const and the surface Q; coincides with the surface 7 = const, where n = z/H(t) and H = H(t) is the equa-
tion of the leading edge of the wing (see Fig. 1).

The solution of the problem is divided into the three problems of determining the flow in regions 1,
2, and 3. The solution of the problem for region 1 gives the initial conditions in the plane Qg and the solu-
tion for region 2 gives the boundary values at the surface Q,. Assuming that the problems for regions 1
and 2 are solved we can formulate the boundary problem for region 3 and give an algorithm for its numeri-
cal solution, and then give algorithms for the problems in regions 1 and 2.
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Let us write the equation of continuity of flow, en-
ergy, and motion in matrix form:

ax X axX
A1W“T"Bl'57'+cl-ﬁ:0 a.1)

Here A, By, and C, are square matrices of fifth or-
der with components ajj, bij, and cjj,

an = b12 =613 = 0, ay = bz2 = Cog = Pazv

/ 51 7= Q4o =gy = Qyq = Q5 = U
by = by = by = by = by = U, ¢51 = €pp = €33 = €34 = €13 =V

a5y = 7)“ = Cgq == 1/0

i

Fig. 1 and the other components of the matrices are zero; X is
the vector column with components u, v, w, p, p; u, v, and
w are the components of the velocity vector along the X, y, and z axes, respectively, relative to Vp,/p_; p
is the pressure relative to p,,, and p is the density relative to p_; a® = k P/0; ke is the ratio of specific
heat capacities.

Let y = G(x, z) be the equation of the upper surface of the wing and y = F(x, z) be the equation of the
outer characteristic surface, At the surface of the wing the condition of nonflow is correct, At the char-
acteristic surface the vector X, which has the same components as in the impinging stream, is known while
the function F(x, z) is unknown.

The boundary problem for region 3 is formulated as follows: the vector X and the function F(x, z)
are known at the plane Q, and the surface Q;. The solution of system (1.1) must be found in this region
with the boundary conditions at the plane @, and the surface Q, given at the surface of the wing and at the
characteristic surface and with symmetry conditions at the plane of symmetry,

The solutjon of this problem is constructed numerically, First the vector X and the function F are
found in a plane QO(’) close to Qq, then the plane Qo(j) is taken as the reference plane, and the process is
repeated up to the trailing edge of the wing,

Let us convert to new coordinates in Egs. (1.1) so that region 3 of the solution has the form of a paral
lelepiped:

z->t, Y— E=n—% Z——)n::—;{%

In these coordinates the region of the solution will be characterized by the inequalities t > ¢y, 0= ¢ =
1, and 0 =71 <1 and the system of eqguations
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The algorithm for the numerical solution of the problem for region 3 coincides with the algorithm
for the solution of the problem for compression flow {2] with the difference that the necessity of determin-
ing the vector X at the outer boundary of the region falls out., A rectangular grid is constructed in the
desired region and an implicit difference system of second-order accuracy is used. The solution of the
system of difference equations is carried out from layer to layer by iteration. The algorithm for this pro-
cess has been presented in [1-3].

2. The problem for region 2 is solved on the assumption that the stream flows over the leading edge
as a slipping wedge and in the plane normal to the leading edge the flow obeys the Prandtl—Meyer law,
The gas-dynamic functions are constant along rays.emerging from the leading edge of the wing in this
plane and depend only on the angle between a given ray and the horizontal plane. This angle is a function
of the coordinate £ .

799



41z

P - T I 25 I~
T ! N
a4 1 3 S
: — a3
; ] ° ]

27— .
Reglo, i . .y ' \
T x ’ el
25 )pxxx’gtx ‘L /\/ \
' a5 7

h
42 74 74 as 2 a7 a7 g z/z

Fig. 2 Fig, 3

To calculate the gasdynamic functions along the rays and consequently at the surface Q; which they
intersect, the velocity vector of the impinging stream is resolved into two components. One of them (V. _)
is directed along the tangent to the leading edge. It remains constant, The other (Vy_) lies in the plane
normal to the leading edge. In the Prandtl~Meyer flow indicated it varies from ray to ray.

The wedge angle is assumed to equal the angle formed by the vector V,, with the line of intersection
of the plane tangent to the wing surface and the plane perpendicular to it at the leading edge.

The gasdynamic functions on the rays are calculated from the velocity V. The resultant velocity
vector at the surface Qq is equal to the sum of the constant component Vi, and the component obtained on
the corresponding ray. By this means the necessary values of the gasdynamic functions are obtained for
each layer at the boundary of region 3 formed by the surface Q.

Since the Prandtl —Meyer flow propagates from the leading edge of the wing within the stream up to
the characteristic cone issuing from the wing tip, for economy in the calculation the surface Qq (in the par-
ticular case of a straight edge,Q, is a plane) should be located at the line of intersection of the character-
istic cone with the wing surface,

The flow at the upper surface of the half-wing has a pronounced transverse velocity component w
which develops inthe expansion near the leading edge and is directed toward the axis of symmetry of the
wing, At the plane of symmetry the components w arriving from the two halves of the wing are mutually
cancelled, which results in the turning of the stream. The turning and compression of the stream near the
plane of symmetry of the wind occur abruptly. The shock wave formed is small and does not produce large
changes in the entropy. It is located within the characteristic cone issuing from the wing tip and in its
lower part is normal to the wing surface. The existence of this shock wave has been noted earlier {4, 5]
and confirmed by experiments [6].

3. Let us examine the problem of determining the initial data at the plane Q; for region 1, It is solved
by the method of determining the self-similar expansion flow, just as for compression flow [2]. The algo-
rithm of transition from layer to layer from the problem for region 3 is used repeatedly until self-similar-
ity is established with respect to the coordinate t with the assigned accuracy. One can begin the determina-
tion from arbitrary data. For this purpose it is convenient to use the flow near two wedges: in the plane
of symmetry and in the plane normal to the leading edge. Intermediate values at points can be obtained by
interpolation, The accuracy of the determination can be controlled with respect to individual values or from
graphs of the functions w and p, since these functions are established more slowly than the others, The
quality of the solution and its determination can also be judged from the behavior of the entropy function
S=p/ pk which must be equal to unity everywhere in the stream (except the vicinity of the internal shock
wave)., Since the entropy function does not enter directly into the algorithm, it must be calculated separately
for purposes of control.

The fact of the existence of a shock wave was not taken into account directly in the algorithm, The
shock wave showed up in the results in a "diffuse” form. Usually four to five calculation points were lo-
cated in the zone of the shock wave. Besides the "internal viscosity" (which occurs because the difference
system is equivalent to the initial equations plus the approximation error) the introduction of an artificial
"viscosity" with respect to the coordinate 1 with a small regulating parameter on it and a single smoothing
of the functions at the layer contributed to an increase in the stability of the difference system in calculat-
ing the discontinuity. The problem for region 1 has an independent meaning for wings with a conical sur-
face.
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4, Calculations of the flow over the upper surfacec of triangular plates with variation in M_,, the sweep-
back angle y of the leading edge, and the angle of attack « were conducted on an electronic computer ac-
cording to the algorithm described.

In the calculations the quality of the solution was controlled with respect to the values of the entropy
function and the value of the Bernoulli integral which does not enter into the algorithm. Everywhere ex-
cept the region of the shock wave the entropy function differs by no more than 5% from unity, while the
Bernoulli integral differs by no more than 1% from its value in the impinging stream.

The pressurc at the upper surface of a triangular plate with M, =6,x = 60°, and « = 7° coincides with
the calculated results from [5].

A comparison of the calculation with experiment [6] is shown in Fig. 2. In the experiment a special
probe introduced into the strcam measured the total pressure behind the dircet shock wave formed in front
of the probe in the field between the upper surface of a triangular plate and the outer characteristic sur-
face. This pressure was divided by the total pressure behind the direct shock wave in the undisturbed
stream, A plate withy =44,7 and o =12° at M_ = 2.94 was used in the experiment. The experimentally
obtained values of the pressure ratio p over the span of the wing are shown in Fig, 2 by crosses and the
calculated results by circles. The relative distance from the surface of the wing at which the pressure
was measured along the span of the wing was y/x = 0.1282, and z/x are the half-spans divided by the base
wing chord,

The position of the internal shock wave was determined in this experiment, The probable position
of the projection of the shock wave on the plane x = const is shown in Fig. 3 by line segments. The posi-
tion of the shock wave obtained from the calculation is plotted by circles. The calculated position of the
trace of the characteristic surface on the plane x = const is also plotted.

Since the shock wave is "diffuse” inthe calculations and the graph of pressure over the span does
not have a clearly expressed "step," the position of the shock wave was determined from the pressure
graphs as the point corresponding to half the sum of the maximum and minimum pressures at the step.

The intensity of the shock wave decreases along the direction from the wing surface toward the outer
characteristic surface. At a certain distance from the wing surface the shock wave degenerates, This is
indicated by the absence of a pressure drop on the graphs beginning with some value of the coordinate &,

A comparison of the present calculations (circles) with calculations of the pressure coefficient cp at
Me = 3, x =45°, and « = 12° from [7] (solid line) is presented in F'ig, 4. A system of continuous calculation
through the discontinuity by the "predictor —corrector™ method with a larger number of calculated points
than in the present work was used in [7]. The discontinuity is approximated well enough by the proposed
system with a calculating grid of 9 x 9 points within the "core" of the stream (the core is bounded by the
plane of symmetry and the plane Q, located on the line of intersection of the characteristic cone with the
wing surface).

The traces on the plane x = const of the outer characteristic surfaces and the internal shock waves
of a triangular plate with M_ =4 and y = 45° for different angles of attack are shown in Fig. 5. It is seen
that as the angle of attack increases, the shock wave approaches the plane of symmetry of the wing, Here
a =5,10, and 15° for 1, 2, and 3, respectively. An analysis of the change in the position of the shock wave
on the upper surface of triangular plates having different degrees of sweepback of the leading edge shows
that the sweepback has little effect on the position of the shock wave.
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Typical graphs of the variation in p/pe =p and w = w/Vp,/ 0, Within the stream over the span of the

upper surface of a triangular plate with M_ =2, x = 45°, and o = 7° are presented in Figs, 6 and 7, In the
graphs 1, 2, 3, 4, and 5 correspond to ¢ =0, 0,5, 0.625, 0,75, and 0,875, Here £ =y/F, where T is the dis-
tance (in units of the base chord) from the surface of the plate to the outer characteristic surface, The
position of this surface is shown by a dashed line in Fig. 6, It is seen from the graphs that with £ = 0,75
the internal shock wave is already almost degenerated, This variant of the calculation lies at the limit of
applicability of the present method of solution, since the turning of the stream in the plane normal to the
leading edge is close to the limit for the lower surface of such a wing and consequently close to departure
of the shock wave from the leading edge and violation of the statement of the problem.,
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